Redis 缓存 |Redis Key Management for DICOM Server - High Performance Caching

Redis Key Management in DICOM Server The redis_key.rs module is a critical component of the DICOM server infrastructure, providing high-performance caching capabilities for medical imaging metadata and authentication data. This module implements intelligent key generation and caching strategies to significantly reduce database load and improve response times. Core Features Authentication Caching The module efficiently caches JWKS (JSON Web Key Set) URLs, which are essential for OAuth2/OpenID Connect authentication in medical imaging systems. This reduces authentication overhead and improves security token validation performance. ...

November 23, 2025

消息队列|Kafka Message Processing for Medical Imaging - Scalable Healthcare Data Streaming

Kafka Message Processing System for Medical Imaging The [message_sender_kafka.rs] module provides robust Kafka integration for medical imaging systems, enabling scalable, reliable message processing for DICOM metadata and imaging workflows. Message Processing Architecture High-Throughput Design Implements batch processing and compression to handle large volumes of medical imaging metadata with minimal resource consumption. Reliable Delivery Features built-in retry mechanisms and error handling to ensure message delivery even in challenging network conditions. Topic Segregation Uses separate Kafka topics for different message types: ...

November 23, 2025

Building Scalable Cloud DICOM-WEB Services: Multi-Database Support with Rust Implementation

Overview In this article, we’ll explore how to implement a scalable cloud DICOM-WEB service using Rust that supports multiple database systems, including MySQL, PostgreSQL, and MongoDB. We’ll focus on creating a flexible database interface that allows for seamless switching between different database backends. Prerequisites: Interface Definition (Traits) First, let’s define our database provider interface using Rust traits: dicom_dbprovider.rs use crate::dicom_meta::{DicomJsonMeta, DicomStateMeta}; use async_trait::async_trait; use thiserror::Error; #[derive(Error, Debug)] pub enum DbError { #[error("Database operation failed: {0}")] DatabaseError(String), #[error("Data record does not exist: {0}")] RecordNotExists(String), #[error("Record already exists")] AlreadyExists, #[error("Entity extraction failed: {0}")] ExtractionFailed(String), #[error("Transaction failed: {0}")] TransactionFailed(String), } pub fn current_time() -> chrono::NaiveDateTime { chrono::Local::now().naive_local() } #[async_trait] pub trait DbProvider: Send + Sync { async fn save_state_info(&self, state_meta: &DicomStateMeta) -> Result<(), DbError>; async fn save_state_list(&self, state_meta: &[DicomStateMeta]) -> Result<(), DbError>; async fn save_json_list(&self, state_meta: &[DicomJsonMeta]) -> Result<(), DbError>; async fn get_state_metaes( &self, tenant_id: &str, study_uid: &str, ) -> Result<Vec<DicomStateMeta>, DbError>; /* * Get metadata series information that needs to generate JSON format. * end_time: cutoff time. */ async fn get_json_metaes(&self, end_time: chrono::NaiveDateTime) -> Result<Vec<DicomStateMeta>, DbError>; async fn get_json_meta(&self, tenant_id:&str, study_uid: &str, series_uid: &str)->Result<DicomJsonMeta, DbError>; } Implementation 3.1 MySQL Database Implementation dicom_mysql.rs use crate::dicom_dbprovider::{DbError, DbProvider}; use crate::dicom_meta::{DicomJsonMeta, DicomStateMeta}; use async_trait::async_trait; use mysql::prelude::*; use mysql::*; pub struct MySqlDbProvider { db_connection_string: String, } impl MySqlDbProvider { pub fn new(db_connection_string: String) -> Self { MySqlDbProvider { db_connection_string, } } } #[async_trait] impl DbProvider for MySqlDbProvider { async fn save_state_info(&self, state_meta: &DicomStateMeta) -> Result<(), DbError> { let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; let query = r#" INSERT INTO dicom_state_meta ( tenant_id, patient_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, patient_name, patient_sex, patient_birth_date, patient_birth_time, patient_age, patient_size, patient_weight, study_date, study_time, accession_number, study_id, study_description, modality, series_number, series_date, series_time, series_description, body_part_examined, protocol_name, series_related_instances, created_time, updated_time ) VALUES ( :tenant_id, :patient_id, :study_uid, :series_uid, :study_uid_hash, :series_uid_hash, :study_date_origin, :patient_name, :patient_sex, :patient_birth_date, :patient_birth_time, :patient_age, :patient_size, :patient_weight, :study_date, :study_time, :accession_number, :study_id, :study_description, :modality, :series_number, :series_date, :series_time, :series_description, :body_part_examined, :protocol_name, :series_related_instances, :created_time, :updated_time ) ON DUPLICATE KEY UPDATE patient_id = VALUES(patient_id), study_uid_hash = VALUES(study_uid_hash), series_uid_hash = VALUES(series_uid_hash), study_date_origin = VALUES(study_date_origin), patient_name = VALUES(patient_name), patient_sex = VALUES(patient_sex), patient_birth_date = VALUES(patient_birth_date), patient_birth_time = VALUES(patient_birth_time), patient_age = VALUES(patient_age), patient_size = VALUES(patient_size), patient_weight = VALUES(patient_weight), study_date = VALUES(study_date), study_time = VALUES(study_time), accession_number = VALUES(accession_number), study_id = VALUES(study_id), study_description = VALUES(study_description), modality = VALUES(modality), series_number = VALUES(series_number), series_date = VALUES(series_date), series_time = VALUES(series_time), series_description = VALUES(series_description), body_part_examined = VALUES(body_part_examined), protocol_name = VALUES(protocol_name), series_related_instances = VALUES(series_related_instances), updated_time = VALUES(updated_time) "#; conn.exec_drop( query, params! { "tenant_id" => &state_meta.tenant_id, "patient_id" => &state_meta.patient_id, "study_uid" => &state_meta.study_uid, "series_uid" => &state_meta.series_uid, "study_uid_hash" => &state_meta.study_uid_hash, "series_uid_hash" => &state_meta.series_uid_hash, "study_date_origin" => &state_meta.study_date_origin, "patient_name" => &state_meta.patient_name, "patient_sex" => &state_meta.patient_sex, "patient_birth_date" => &state_meta.patient_birth_date, "patient_birth_time" => &state_meta.patient_birth_time, "patient_age" => &state_meta.patient_age, "patient_size" => &state_meta.patient_size, "patient_weight" => &state_meta.patient_weight, "study_date" => &state_meta.study_date, "study_time" => &state_meta.study_time, "accession_number" => &state_meta.accession_number, "study_id" => &state_meta.study_id, "study_description" => &state_meta.study_description, "modality" => &state_meta.modality, "series_number" => &state_meta.series_number, "series_date" => &state_meta.series_date, "series_time" => &state_meta.series_time, "series_description" => &state_meta.series_description, "body_part_examined" => &state_meta.body_part_examined, "protocol_name" => &state_meta.protocol_name, "series_related_instances" => &state_meta.series_related_instances, "created_time" => &state_meta.created_time, "updated_time" => &state_meta.updated_time, }, ) .map_err(|e| DbError::DatabaseError(format!("Failed to execute query: {}", e)))?; Ok(()) } async fn save_state_list(&self, state_meta_list: &[DicomStateMeta]) -> Result<(), DbError> { if state_meta_list.is_empty() { return Ok(()); } let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; conn.query_drop("START TRANSACTION") .map_err(|e| DbError::DatabaseError(format!("Failed to start transaction: {}", e)))?; let query = r#" INSERT INTO dicom_state_meta ( tenant_id, patient_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, patient_name, patient_sex, patient_birth_date, patient_birth_time, patient_age, patient_size, patient_weight, study_date, study_time, accession_number, study_id, study_description, modality, series_number, series_date, series_time, series_description, body_part_examined, protocol_name, series_related_instances, created_time, updated_time ) VALUES ( :tenant_id, :patient_id, :study_uid, :series_uid, :study_uid_hash, :series_uid_hash, :study_date_origin, :patient_name, :patient_sex, :patient_birth_date, :patient_birth_time, :patient_age, :patient_size, :patient_weight, :study_date, :study_time, :accession_number, :study_id, :study_description, :modality, :series_number, :series_date, :series_time, :series_description, :body_part_examined, :protocol_name, :series_related_instances, :created_time, :updated_time ) ON DUPLICATE KEY UPDATE patient_id = VALUES(patient_id), study_uid_hash = VALUES(study_uid_hash), series_uid_hash = VALUES(series_uid_hash), study_date_origin = VALUES(study_date_origin), patient_name = VALUES(patient_name), patient_sex = VALUES(patient_sex), patient_birth_date = VALUES(patient_birth_date), patient_birth_time = VALUES(patient_birth_time), patient_age = VALUES(patient_age), patient_size = VALUES(patient_size), patient_weight = VALUES(patient_weight), study_date = VALUES(study_date), study_time = VALUES(study_time), accession_number = VALUES(accession_number), study_id = VALUES(study_id), study_description = VALUES(study_description), modality = VALUES(modality), series_number = VALUES(series_number), series_date = VALUES(series_date), series_time = VALUES(series_time), series_description = VALUES(series_description), body_part_examined = VALUES(body_part_examined), protocol_name = VALUES(protocol_name), series_related_instances = VALUES(series_related_instances), updated_time = VALUES(updated_time) "#; for state_meta in state_meta_list { let result = conn.exec_drop( query, params! { "tenant_id" => &state_meta.tenant_id, "patient_id" => &state_meta.patient_id, "study_uid" => &state_meta.study_uid, "series_uid" => &state_meta.series_uid, "study_uid_hash" => &state_meta.study_uid_hash, "series_uid_hash" => &state_meta.series_uid_hash, "study_date_origin" => &state_meta.study_date_origin, "patient_name" => &state_meta.patient_name, "patient_sex" => &state_meta.patient_sex, "patient_birth_date" => &state_meta.patient_birth_date, "patient_birth_time" => &state_meta.patient_birth_time, "patient_age" => &state_meta.patient_age, "patient_size" => &state_meta.patient_size, "patient_weight" => &state_meta.patient_weight, "study_date" => &state_meta.study_date, "study_time" => &state_meta.study_time, "accession_number" => &state_meta.accession_number, "study_id" => &state_meta.study_id, "study_description" => &state_meta.study_description, "modality" => &state_meta.modality, "series_number" => &state_meta.series_number, "series_date" => &state_meta.series_date, "series_time" => &state_meta.series_time, "series_description" => &state_meta.series_description, "body_part_examined" => &state_meta.body_part_examined, "protocol_name" => &state_meta.protocol_name, "series_related_instances" => &state_meta.series_related_instances, "created_time" => &state_meta.created_time, "updated_time" => &state_meta.updated_time, }, ); if let Err(e) = result { conn.query_drop("ROLLBACK").map_err(|rollback_err| { DbError::DatabaseError(format!( "Failed to rollback transaction after error {}: {}", e, rollback_err )) })?; return Err(DbError::DatabaseError(format!( "Failed to execute query for state meta: {}", e ))); } } conn.query_drop("COMMIT") .map_err(|e| DbError::DatabaseError(format!("Failed to commit transaction: {}", e)))?; Ok(()) } async fn save_json_list( &self, json_meta_list: &[DicomJsonMeta], ) -> std::result::Result<(), DbError> { if json_meta_list.is_empty() { return Ok(()); } let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; conn.query_drop("START TRANSACTION") .map_err(|e| DbError::DatabaseError(format!("Failed to start transaction: {}", e)))?; let query = r#" INSERT INTO dicom_json_meta ( tenant_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, created_time, flag_time, json_status, retry_times ) VALUES ( :tenant_id, :study_uid, :series_uid, :study_uid_hash, :series_uid_hash, :study_date_origin, :created_time, :flag_time, :json_status, :retry_times ) ON DUPLICATE KEY UPDATE study_uid_hash = VALUES(study_uid_hash), series_uid_hash = VALUES(series_uid_hash), study_date_origin = VALUES(study_date_origin), created_time = VALUES(created_time), flag_time = VALUES(flag_time), json_status = VALUES(json_status), retry_times = VALUES(retry_times) "#; for json_meta in json_meta_list { let result = conn.exec_drop( query, params! { "tenant_id" => &json_meta.tenant_id, "study_uid" => &json_meta.study_uid, "series_uid" => &json_meta.series_uid, "study_uid_hash" => &json_meta.study_uid_hash, "series_uid_hash" => &json_meta.series_uid_hash, "study_date_origin" => &json_meta.study_date_origin, "created_time" => &json_meta.created_time, "flag_time" => &json_meta.flag_time, "json_status" => &json_meta.json_status, "retry_times" => &json_meta.retry_times, }, ); if let Err(e) = result { conn.query_drop("ROLLBACK").map_err(|rollback_err| { DbError::DatabaseError(format!( "Failed to rollback transaction after error {}: {}", e, rollback_err )) })?; return Err(DbError::DatabaseError(format!( "Failed to execute query for json meta: {}", e ))); } } conn.query_drop("COMMIT") .map_err(|e| DbError::DatabaseError(format!("Failed to commit transaction: {}", e)))?; Ok(()) } async fn get_state_metaes( &self, tenant_id: &str, study_uid: &str, ) -> Result<Vec<DicomStateMeta>, DbError> { let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; let query = r#" SELECT tenant_id, patient_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, patient_name, patient_sex, patient_birth_date, patient_birth_time, patient_age, patient_size, patient_weight, study_date, study_time, accession_number, study_id, study_description, modality, series_number, series_date, series_time, series_description, body_part_examined, protocol_name, series_related_instances, created_time, updated_time FROM dicom_state_meta WHERE tenant_id = :tenant_id AND study_uid = :study_uid "#; let result: Vec<DicomStateMeta> = conn .exec_map( query, params! { "tenant_id" => tenant_id, "study_uid" => study_uid, }, |row: mysql::Row| { DicomStateMeta { tenant_id: row.get("tenant_id").unwrap_or_default(), patient_id: row.get("patient_id").unwrap_or_default(), study_uid: row.get("study_uid").unwrap_or_default(), series_uid: row.get("series_uid").unwrap_or_default(), study_uid_hash: row.get("study_uid_hash").unwrap_or_default(), series_uid_hash: row.get("series_uid_hash").unwrap_or_default(), study_date_origin: row.get("study_date_origin").unwrap_or_default(), patient_name: row.get("patient_name").unwrap_or_default(), patient_sex: row.get("patient_sex").unwrap_or_default(), patient_birth_date: row.get("patient_birth_date").unwrap_or_default(), patient_birth_time: row.get("patient_birth_time").unwrap_or_default(), patient_age: row.get("patient_age").unwrap_or_default(), patient_size: row.get("patient_size").unwrap_or_default(), patient_weight: row.get("patient_weight").unwrap_or_default(), study_date: row.get("study_date").unwrap_or_default(), study_time: row.get("study_time").unwrap_or_default(), accession_number: row.get("accession_number").unwrap_or_default(), study_id: row.get("study_id").unwrap_or_default(), study_description: row.get("study_description").unwrap_or_default(), modality: row.get("modality").unwrap_or_default(), series_number: row.get("series_number").unwrap_or_default(), series_date: row.get("series_date").unwrap_or_default(), series_time: row.get("series_time").unwrap_or_default(), series_description: row.get("series_description").unwrap_or_default(), body_part_examined: row.get("body_part_examined").unwrap_or_default(), protocol_name: row.get("protocol_name").unwrap_or_default(), series_related_instances: row .get("series_related_instances") .unwrap_or_default(), created_time: row.get("created_time").unwrap_or_default(), updated_time: row.get("updated_time").unwrap_or_default(), } }, ) .map_err(|e| DbError::DatabaseError(format!("Failed to execute query: {}", e)))?; Ok(result) } async fn get_json_metaes( &self, end_time: chrono::NaiveDateTime, ) -> std::result::Result<Vec<DicomStateMeta>, DbError> { let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; let query = r#" Select tenant_id, patient_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, patient_name, patient_sex, patient_birth_date, patient_birth_time, patient_age, patient_size, patient_weight, study_date, study_time, accession_number, study_id, study_description, modality, series_number, series_date, series_time, series_description, body_part_examined, protocol_name, series_related_instances, created_time, updated_time From (SELECT dsm.* FROM dicom_state_meta dsm LEFT JOIN dicom_json_meta djm ON dsm.tenant_id = djm.tenant_id AND dsm.study_uid = djm.study_uid AND dsm.series_uid = djm.series_uid WHERE djm.tenant_id IS NULL AND dsm.updated_time < ? UNION ALL SELECT dsm.* FROM dicom_state_meta dsm INNER JOIN dicom_json_meta djm ON dsm.tenant_id = djm.tenant_id AND dsm.study_uid = djm.study_uid AND dsm.series_uid = djm.series_uid WHERE dsm.updated_time != djm.flag_time AND dsm.updated_time < ? ) AS t order by t.updated_time asc limit 10; "#; let result: Vec<DicomStateMeta> = conn .exec_map(query, params! { end_time,end_time }, |row: mysql::Row| { DicomStateMeta { tenant_id: row.get("tenant_id").unwrap_or_default(), patient_id: row.get("patient_id").unwrap_or_default(), study_uid: row.get("study_uid").unwrap_or_default(), series_uid: row.get("series_uid").unwrap_or_default(), study_uid_hash: row.get("study_uid_hash").unwrap_or_default(), series_uid_hash: row.get("series_uid_hash").unwrap_or_default(), study_date_origin: row.get("study_date_origin").unwrap_or_default(), patient_name: row.get("patient_name").unwrap_or_default(), patient_sex: row.get("patient_sex").unwrap_or_default(), patient_birth_date: row.get("patient_birth_date").unwrap_or_default(), patient_birth_time: row.get("patient_birth_time").unwrap_or_default(), patient_age: row.get("patient_age").unwrap_or_default(), patient_size: row.get("patient_size").unwrap_or_default(), patient_weight: row.get("patient_weight").unwrap_or_default(), study_date: row.get("study_date").unwrap_or_default(), study_time: row.get("study_time").unwrap_or_default(), accession_number: row.get("accession_number").unwrap_or_default(), study_id: row.get("study_id").unwrap_or_default(), study_description: row.get("study_description").unwrap_or_default(), modality: row.get("modality").unwrap_or_default(), series_number: row.get("series_number").unwrap_or_default(), series_date: row.get("series_date").unwrap_or_default(), series_time: row.get("series_time").unwrap_or_default(), series_description: row.get("series_description").unwrap_or_default(), body_part_examined: row.get("body_part_examined").unwrap_or_default(), protocol_name: row.get("protocol_name").unwrap_or_default(), series_related_instances: row .get("series_related_instances") .unwrap_or_default(), created_time: row.get("created_time").unwrap_or_default(), updated_time: row.get("updated_time").unwrap_or_default(), } }) .map_err(|e| DbError::DatabaseError(format!("Failed to execute query: {}", e)))?; Ok(result) } async fn get_json_meta( &self, tenant_id: &str, study_uid: &str, series_uid: &str, ) -> std::result::Result<DicomJsonMeta, DbError> { let mut conn = mysql::Conn::new(self.db_connection_string.as_str()) .map_err(|e| DbError::DatabaseError(format!("Failed to connect to MySQL: {}", e)))?; let query = r#" SELECT tenant_id, study_uid, series_uid, study_uid_hash, series_uid_hash, study_date_origin, created_time, flag_time, json_status, retry_times FROM dicom_json_meta WHERE series_uid = :series_uid and tenant_id = :tenant_id and study_uid = :study_uid "#; let result: Option<DicomJsonMeta> = conn .exec_first( query, params! { "series_uid" => series_uid, "tenant_id" => tenant_id, "study_uid" => study_uid, }, ) .map_err(|e| DbError::DatabaseError(format!("Failed to execute query: {}", e)))? .map(|row: mysql::Row| DicomJsonMeta { tenant_id: row.get("tenant_id").unwrap_or_default(), study_uid: row.get("study_uid").unwrap_or_default(), series_uid: row.get("series_uid").unwrap_or_default(), study_uid_hash: row.get("study_uid_hash").unwrap_or_default(), series_uid_hash: row.get("series_uid_hash").unwrap_or_default(), study_date_origin: row.get("study_date_origin").unwrap_or_default(), created_time: row.get("created_time").unwrap_or_default(), flag_time: row.get("flag_time").unwrap_or_default(), json_status: row.get("json_status").unwrap_or_default(), retry_times: row.get("retry_times").unwrap_or_default(), }); match result { Some(json_meta) => Ok(json_meta), None => Err(DbError::DatabaseError(format!( "DicomJsonMeta with series_uid {} not found", series_uid ))), } } } 3.2 PostgreSQL Implementation Here’s the PostgreSQL implementation: ...

November 20, 2025

Building DICOM Gateway with FoDICOM: Batch Sending DICOM Files Guide

DICOM Gateway: A Middleware System for Medical Imaging Data Conversion and Routing A DICOM Gateway is a specialized middleware system designed to convert, route, adapt, or process DICOM data streams between different medical information systems. It is typically deployed at network boundaries or system integration points, serving as a “protocol converter,” “data router,” and “data preprocessor.” What is a DICOM Gateway? Conceptually, a DICOM Gateway is the specific application of traditional network “gateways” in the medical imaging domain: ...

November 20, 2025

Rust Type-Safe Wrappers for DICOM Medical Imaging Systems: Building Scalable Cloud DICOM-WEB Services

Introduction In DICOM medical imaging systems, data accuracy and consistency are critical. This article explores how to use Rust’s type system to create custom type-safe wrappers that prevent runtime errors and improve code maintainability. BoundedString: Length-Limited Strings BoundedString<N> is a generic struct that ensures strings do not exceed N characters in length. FixedLengthString: Fixed-Length Strings FixedLengthString<N> ensures strings are exactly N characters long, which is useful when handling certain DICOM fields. ...

November 20, 2025

Rust Implementation of DICOM Medical Imaging Systems: Type-Safe Database Design | Building Scalable Cloud DICOM-WEB Services

Rust Implementation of DICOM Medical Imaging Systems: Type-Safe Database Design This project demonstrates how to build a robust, type-safe database access layer in Rust, specifically designed for healthcare applications requiring strict data validation. Through abstract interfaces and concrete implementation separation, the system can easily scale to support more database types while ensuring code maintainability and testability. Core Design Concepts 1. Type-Safe Data Structures Several key type-safe wrappers are defined in the project: ...

November 20, 2025

Preparations for Building Scalable Cloud DICOM-WEB Services

Preparations for Building Scalable Cloud DICOM-WEB Services This article introduces the architectural design of a DICOM medical imaging system developed using Rust, which employs a modern technology stack including PostgreSQL as the primary index database, Apache Doris for log storage, RedPanda as the message queue, and Redis for caching. The system design supports both standalone operation and distributed scaling, fully leveraging the safety and performance advantages of the Rust programming language. ...

November 19, 2025

How to Use fo-dicom to Build DICOM C-Store SCU Tool for Batch Sending DICOM Files

How to Use fo-dicom to Build DICOM C-Store SCU Tool for Batch Sending DICOM Files Building a DICOM C-Store SCU (Service Class User) tool is essential for medical imaging applications that require sending DICOM files to storage systems. This tutorial will guide you through creating a robust batch DICOM file sender using fo-dicom, a powerful open-source DICOM library written in C#. Fo-DICOM provides comprehensive features for working with DICOM data, including support for reading, writing, and manipulating DICOM files. This guide demonstrates how to create a DICOM C-Store SCU tool capable of batch sending DICOM files for testing and verification purposes in medical imaging environments. ...

November 19, 2025

How to Modify DICOM Transfer Syntax Using Fo-DICOM Library: Encoding Format Conversion Guide

Purpose and Benefits of Modifying DICOM File Transfer Syntax In medical image processing and exchange, Transfer Syntax is a key component of the DICOM standard that defines data encoding methods. It determines the byte order of data elements in DICOM files, whether Value Representation (VR) is explicitly declared, and whether pixel data is compressed. Therefore, modifying the transfer syntax of DICOM files is a common and important operation with clear purposes and significant benefits. ...

November 15, 2025

DICOM Core Information Structure and Explanation: Understanding Medical Imaging Standards

DICOM Basic Concepts DICOM (Digital Imaging and Communications in Medicine) is the international standard (ISO 12052) for medical imaging and related information, used for storing, exchanging, and transmitting medical images and related data. DICOM files not only contain pixel data (the image itself) but also contain extensive metadata describing the image, organized as “data elements” within “Information Object Definitions” (IOD). ✅ 1. Core Structure of DICOM Files File Header (File Meta Information) 128-byte fixed-length preamble (usually all 0x00, optional) 4-byte DICOM prefix “DICM” File meta information group (Group 0002), including: (0002,0000) File Meta Information Group Length (0002,0001) File Meta Information Version (0002,0002) Media Storage SOP Class UID (0002,0003) Media Storage SOP Instance UID (0002,0010) Transfer Syntax UID (0002,0012) Implementation Class UID (0002,0013) Implementation Version Name Dataset Contains actual image information and metadata, following specific IODs (such as CT Image IOD, MR Image IOD, etc.) Data elements organized by tags, formatted as (gggg,eeee), where gggg is the group number and eeee is the element number Each data element includes: Tag, VR (Value Representation), Value Length, Value ✅ 2. Core Information Object (IOD) Structure Explanation Each DICOM image belongs to a SOP Class (Service-Object Pair Class), for example: ...

November 14, 2025